Objective: Validate LLM-generated code across diverse inputs by executing it in AVM’s secure, isolated environments.

Code Generation Evaluations

An eval is a test harness that assesses code produced by an LLM. AVM enables you to generate code via an LLM, run it securely on a mesh of peer-operated nodes, and verify output correctness against expected results.

Scenario: Robust Code Validation

You need to ensure that functions transforming CSV to JSON handle edge cases and schema variations before deployment.

Solution: AVM-Powered Eval

  1. Generate Code
    Prompt an LLM to produce transformation functions.
  2. Execute Securely
    Use AVM’s runPython tool to run untrusted code in sandboxed containers.
  3. Assert Results
    Compare outputs against predefined JSON schemas in the same workflow.

Example (TypeScript)

import { runPythonTool } from "@avm-ai/avm-vercel-ai";
import { openai } from "@ai-sdk/openai";
import { generateText } from "ai";

const tool = runPythonTool();

async function evaluate(testCases: { input: string; expected: any }[]) {
  let passed = 0;
  for (const { input, expected } of testCases) {
    const { text: code } = await generateText({
      model: openai("gpt-4o"),
      prompt: \`Write a Python function execute(input) that converts CSV to JSON\`,
      tools: { runPython: tool },
    });
    const result = await tool.exec({ code, input: { data: input } });
    if (result.output.result === JSON.stringify(expected)) passed++;
  }
  console.log(\`Passed \${passed}/\${testCases.length}\`);
}

Next Steps

  • Expand to multi-language evals (JS, Rust).
  • Integrate into CI/CD pipelines via AVM API.
  • Benchmark multiple LLMs under identical test harnesses.