Use Cases
Data Transformation
Agent-led data transformation using AVM
Objective: Enable agent-led data transformation through LLM-generated scripts executed on AVM.
Data Transformation
Automate conversion pipelines by having an LLM produce transformation functions, then execute safely via AVM.
Use Cases
Web2: CSV → JSON → Notion
Transform business data across different formats and integrate with productivity tools.
Web3: Normalize Wallet Data → Subgraphs
Process blockchain wallet data and prepare it for indexing in decentralized subgraphs.
Scenario: Custom Schema Delivery
Clients request data in bespoke JSON structures without manual coding.
Implementation: Schema-Driven Codegen
- Define Schema
Provide a JSON Schema template. - Generate Code
Prompt the LLM to write anexecute(input)
function matching the schema. - Secure Run
Execute the function in AVM’s sandbox. - Deliver Output
Return parsed JSON conforming to the schema.
Example (TypeScript)
Next Steps
- Validate output with JSON Schema tooling.
- Chain pipelines in agent orchestrations.
- Support additional runtimes for performance-critical tasks.